Q1.

1	2	(a)	(i)	distance from a (fixed) point		
			(ii)	(displacement from start is zero if) car at its starting position B1		[3]
		(b)	(i)1	$v^2 = u^2 + 2as$ $28^2 = 2 \times a \times 450$ (use of component of 450 scores no marks) C1 $a = 0.87 \text{ m s}^{-2}$		[2]
			(i)2	v = u + at or any appropriate equation28 = 0.87t or appropriate substitution		[2]
			(i)3	$= \frac{1}{2} \times 800 \times 28^2$		7020
				= 3.14 x 10 ⁵ J		[2]
			(i)4	$E_{\rm p} = mgh$		[3]
			(ii)	power = energy/time		[3]
				(power = Fv with $F = mg \sin \theta$ scores no marks)		
			(iii)	some <u>work also done against friction</u> forces		[2]
			(all	ow reasonable alternatives)		
Q2.						
5	(a	1)	(i) (ii)	distance = $2\pi nr$ work done = $F \times 2 \pi nr$ (accept e.c.f.)	B1 B1	[2]
	(k)		total work done = $2 \times F \times 2\pi nr$ but torque $T = 2Fr$ hence work done = $T \times 2\pi n$	B1 B1 A0	[2]
	(0	;)		power = work done/time (= $470 \times 2\pi \times 2400$)/60)	N2/202	(~)
		(5)		= 1.2 x 10 ⁵ W Total	A1	[2] [6]

Q3.

;	3	(a	a) (i)	$\Delta E_{p} = mq\Delta h$ $= 0.602 \times 9.8 \times 0.086$	C1	
				= 0.51 J (do not allow g = 10, m = 0.600 or answer 0.50 J)	A1	[2]
			(ii)	$v^2 = (2gh =) 2 \times 9.8 \times 0.086 \text{ or } (2 \times 0.51)/0.602$ $v = 1.3 \text{ (m s}^{-1)}$	M1 A0	[1]
		(t	o)	$2 \times V = 602 \times 1.3$ (allow 600) $V = 390 \text{ m s}^{-1}$	C1 A1	[2]
		(0	c) (i)	$E_{\rm k} = \frac{1}{2}mv^2$ = $\frac{1}{2} \times 0.002 \times 390^2$ = 152 J or 153 J or 150 J	C1 A1	[2]
			(ii)	E _k not the same/changes or E _k before impact>E _k after/E _p after so must be inelastic collision (allow 1 mark for 'bullet embeds itself in block' etc.)	M1 A1	[2]
Q4.						
4	(a)	(i)	= 0.0	nge in) potential energy = <i>mgh</i> 956 × 9.8 × 16 78 J (<i>allow 8.8</i>)	C1 A1	[2]
		(ii)		al) kinetic energy = $\frac{1}{2}mv^2$ = $\frac{1}{2} \times 0.056 \times 18^2$ = 9.07 J (allow 9.1) kinetic energy = 8.78 + 9.07 = 17.9 J	C1 C1 A1	[3]
	(b)			therefore $v = \frac{1}{2}mv^2$ $\times 0.056 \times v^2$ and $v = 25(.3) \text{ m s}^{-1}$	B1	[1]
	(c)	hor	izonta	I velocity = 18 m s ⁻¹	B1	[1]
	(d)	(i)		ect shape of diagram sides of right-angled triangle with correct orientation)	В1	
		(ii)		$e = 41^{\circ} \rightarrow 48^{\circ}$ (allow trig. solution based on diagram)	A2	[3]

Q5.

3	(a)) ei	the		nergy (stored)/work done represented by area under graph		
		Of			nergy = average force × extension	B1	
		er	nerç		: ½ × 180 × 4.0 × 10 ⁻²		
				10	3.6 J	A1	[3]
	(b)	1 7	i) e	ithe	r momentum before release is zero	М1	
					so sum of momenta (of trolleys) after release is zero	A1	
				r	force = rate of change of momentum (M1)		
			Ĭ	•	force on trolleys equal and opposite (A1)		
				r	impulse = change in momentum (M1)		
					impulse on each equal and opposite (A1)		וכז
					impulse on each equal and opposite (A1)		[2]
		(ii	i) 1	M	$V_1V_1 = M_2V_2$	В1	[1]
					- V H V 2 · V H V 2	В4	F41
			4	Ξ	$= \frac{1}{2} M_1 V_1^2 + \frac{1}{2} M_2 V_2^2 \qquad$	В1	[1]
		(iii	i) 1	E	$c_c = \frac{1}{2}mv^2$ and $p = mv$ combined to give	M1	
		17000	1515 S	5	$\zeta = p^2/2m$	Α0	[1]
			•		amallar E is larger because n is the same/constant	N//	
			4		smaller, E _K is larger because p is the same/constant	M1	[4]
				SC	trolley B	A0	[1]
06.							
20.							
	2	(a)	wc	nrk n	one is the force × the distance moved / displacement in the direction of the		
	_	Įω	_ 3	ce	one is the force while distance moved / displacement in the direction of the		
			or				
			WC	ork is	done when a force moves in the direction of the force	B1	[1]
		(b)	СО	mpc	nent of weight = 850 × 9.81 × sin 7.5°	C1	
					= 1090 N	A1	[2]
			(u	se o	f incorrect trigonometric function, 0/2)		
		(c)	m	Σ	F = 4600 - 1090 = (3510)	M1	
					celeration = 3510 / 850	A1	
					= 4.1 ms ⁻²	A0	[2]
				2	2.0		
			(11)		$= u^2 + 2as$ = $25^2 + 2 \times -4.1 \times s$	04	
						C1	
				S	= 625 / 8.2		FO1
				10	= 76 m flow full credit for calculation of time (6.05 s) & then s)	A1	[2]
				(a	ilow full credit for calculation of time (0.05 s) & then s)		
			(iii)	1.		C1	
					$= 0.5 \times 850 \times 25^2$	21020	
					$= 2.7 \times 10^5 \mathrm{J}$	A1	[2]
				2.	work done = 4600 × 75.7		
				100.00	$= 3.5 \times 10^5 \mathrm{J}$	A1	[1]
			/r. ·		Wanted to the land in a death of a second of the A	D.4	F47
			(IV)	an	ference is the loss in potential energy (owtte)	B1	[1]

Q7.

3	(a)	evidence of use of area below the line distance = $39 \text{ m} (allow \pm 0.5 m)$ (if $> \pm 0.5 m$ but $\le 1.0 \text{ m}$, then allow 1 mark)		B1 A2	[3]		
	(b)	(i)	1	$E_{K} = \frac{1}{2}mv^{2}$ $\Delta E_{K} = \frac{1}{2} \times 92$	2 × (e ² 2 ²)	C1	
				= 1240 J	2 ^ (0 - 3)	A1	[2]
				$E_P = mgh$	0.440	C1	
				Δ <i>E</i> _P = 92 × 9 = 1170J	.8 × 1.3	A1	[2]
		(ii)	E=			C1	
				: 75 × 8 :00 J		A1	[2]
	(c)	(i)		ergy = (1240 · 70J	+ 600) – 1170	M1 A0	[1]
		(ii)	ford	ce = 670/39 =	: 17N	A1	[1]
	(d)				de air resistance ases with decrease of speed	B1 B1	[2]
Q8.							
3	(a)	(i)		k done equals force	s force × distance moved / displacement in the direction of	В1	[1]
		(ii)	pow	er is the rate	of doing work / work done per unit time	B1	[1]
	(b)	(i)	kine	10.000.000	= $\frac{1}{2} mv^2$ = 0.5 × 600 (9.5) ² = 27075 (J) = 27 kJ	C1 C1 A1	[3]
		(ii)	pote		= mgh = 600 × 9.81 × 4.1 = 24132 (J) = 24 kJ	M1 A1 A0	[2]
	ſ	iii)	worl	k done = 27 –	24 = 3.0 kJ	A 1	[1]
	(iv)	resis		8000 / 8.2 (distance along slope = 4.1 / sin 30°) 866 N	C1 A1	[2]

Q9.

```
2 (a) (i) v^2 = u^2 + 2as
                     = (8.4)^2 + 2 \times 9.81 \times 5
                                                                                                          C1
                     = 12.99 ms<sup>-1</sup> (allow 13 to 2 s.f. but not 12.9)
                                                                                                          A1
                                                                                                                    [2]
            (ii) t = (v - u) / a or s = ut + \frac{1}{2}at^2
                   = (12.99 - 8.4) / 9.81 \text{ or } 5 = 8.4t + \frac{1}{2} \times 9.81t^{2}
                                                                                                          M1
                 t = 0.468s
                                                                                                          A0
                                                                                                                    [1]
       (b) reasonable shape
                                                                                                          M1
            suitable scale
                                                                                                          A1
            correctly plotted 1st and last points at (0,8.4) and (0.88 - 0.96,0)
            with non-vertical line at 0.47 s
                                                                                                          A1
                                                                                                                    [3]
       (c) (i) 1. kinetic energy at end is zero so \Delta KE = \frac{1}{2} mv^2 or \Delta KE = \frac{1}{2} mu^2 - \frac{1}{2} mv^2
                                                                                                          C1
                        = \frac{1}{2} \times 0.05 \times (8.4)^2
                        = (-) 1.8 J
                                                                                                          A1
                                                                                                                    [2]
                 2. final maximum height = (4.2)^2 / (2 \times 9.8) = (0.9 \text{ (m)})
                     change in PE = mgh_2 - mgh_1
                                                                                                          C<sub>1</sub>
                                     = 0.05 \times 9.8 \times (0.9 - 5)
                                                                                                          C1
                                     = (-) 2.0 J
                                                                                                          A1
                                                                                                                    [3]
            (ii) change is - 3.8 (J)
                                                                                                          B1
                 energy lost to ground (on impact) / energy of deformation of the ball /
                 thermal energy in ball
                                                                                                          B1
                                                                                                                    [2]
Q10.
       (a) loss in potential energy due to decrease in height (as P.E. = mgh)
                                                                                                             (B1)
             gain in kinetic energy due to increase in speed (as K.E. = \frac{1}{2} mv^2)
                                                                                                             (B1)
               special case 'as PE decreases KE increases' (1/2)
             increase in thermal energy due to work done against air resistance
                                                                                                             (B1)
             loss in P.E. equals gain in K.E. and thermal energy
                                                                                                             (B1)
                                                                                                          max. 3
                                                                                                                     [3]
                                                                                                              C1
      (b) (i) kinetic energy = \frac{1}{2} mv^2
                                   = \frac{1}{2} \times 0.150 \times (25)^2
                                                                                                              C1
                                   = 46.875 = 47 J
                                                                                                              A1
                                                                                                                     [3]
                                                                                                              C1
           (ii) 1. potential energy (= mgh) = 0.150 × 9.81 × 21
                      loss = KE - mgh = 46.875 - (30.9)
                                                                                                              C1
                           = 15.97 = 16J
                                                                                                              A1
                                                                                                                     [3]
                 2. work done = 16J
                      work done = force × distance
                                                                                                              C<sub>1</sub>
                      F = 16 / 21 = 0.76 N
                                                                                                                     [2]
                                                                                                              A1
```

Q11.

4	(a))		$rce \times distance \underline{moved}$ M1 the direction of the force A1	[2]		
	(b))	ΔE	eight / force = mg	[2]		
Q12	2.						
8		(a)		product of force and distance moved in the direction of the force	M1 A1	[2	2]
		(b)	(i)	falls from rest decreasing acceleration reaches a constant speed	B1 B1 B1	[3	3]
			(iii	straight line with negative gradient y-axis intercept above maximum $E_{\rm K}$ reasonable gradient (same magnitude as that for $E_{\rm K}$ initially)	B1 B1 B1	[3	31
Q13	3.						
	1	(a)	(i) (ii)	product of force and distance <u>moved</u> (by force) in the direction of the force work (done) per unit time (idea of ratio needed)	A	//1 \1 31	[2] [1]
		(b)		either work/time or power = (force × distance)/time to give power = force × velocity	555	/11 \1	[2]
		(c)	(i)	kinetic energy (= $\frac{1}{2}mv^2$) = $\frac{1}{2} \times 1900 \times 27^2$ power = $692550 / 8.1 = 8.55 \times 10^4 \text{ W}$	Α	1	[2]
			(ii)	either for equal increments of speed, increments of E _K are different so longer time (to increase speed) at high speeds or air resistance increases with speed (M1) so driving force (and acceleration) reduced (A1) or P(=Fv) = mav (M1) (P and m constant) so when v increases, a decreases (A1)		//1 \1	[2]

Q14.

3	(a)	(i)	potential energy: stored energy available to do work	31	[1]	
		(ii)		31 31	[2]	
	(b)	(i)		C1 A1	[2]	
		(ii)		C1 A1	[2]	
Q15	j.					
4	l (electrical potential energy (stored) when charge moved and gravitational potential energy (stored) when mass moved due to work done in electric field and work done in gravitational field	ıl	B1 B1	[2]
	(work done = force × distance moved (in direction of force) and force = mg $mg \times h$ or $mg \times \Delta h$		M1 A1	[2]
	(c)	(i) $0.1 \times mgh = \frac{1}{2} mv^2$ $0.1 \times m \times 9.81 \times 120 = 0.5 \times m \times v^2$ $v = 15.3 \text{ms}^{-1}$		B1 B1 A0	[2]
		(ii) $P = 0.5 m v^2 / t$ $m / t = 110 \times 10^3 / [0.25 \times 0.5 \times (15.3)^2]$ $= 3740 \text{kg s}^{-1}$		C1 C1 A1	[3]

Q16.

3	(a) (power = work done per unit time / energy transferred per unit time / rate of done	work B1	[1]
		(i	i) \	oung modulus = stress / strain	B1	[1]
	(b) (i) 1	1. $E = T / (A \times \text{strain})$ (allow strain = ε) $T = E \times A \times \text{strain} = 2.4 \times 10^{11} \times 1.3 \times 10^{-4} \times 0.001$ = 3.12 × 10 ⁴ N	C1 M1 A0	[2
			2	2. $T - W = ma$ $[3.12 \times 10^4 - 1800 \times 9.81] = 1800a$ $a = 7.52 \text{ ms}^{-2}$	C1 C1 A1	[3
		(i	i) 1	$T = 1800 \times 9.81 = 1.8 \times 10^4 \text{N}$	A1	[1]
			2	2. potential energy gain = mgh = 1800 × 9.81 × 15 = 2.7 × 10 ⁵ J	C1	ro.
				9 -11 11-10-1	A1	[2
		(ii	3. 5 31	P = FV = 1800 × 9.81 × 0.55 nput power = 9712 × (100/30) = 32.4 × 10 ³ W	C1 C1 A1	[3
Q17.	ı					
3	(a)			e) force × distance moved / displacement in the direction of the force en a force moves in the direction of the force work is done	В1	[1]
	(b)	kine	etic e	energy = $\frac{1}{2} mv^2$ = $\frac{1}{2} 0.4 (2.5)^2 = 1.25 / 1.3 J$	C1 A1	[2]
	(c)	(i)	are	ea under graph is work done / work done = ½ Fx 1.25 = (14 x) / 2	C1 C1	
			x =	0.18 (0.179) m [allow $x = 0.19 m$ using kinetic energy = 1.3 J]	A1	[3]
		(ii)		ooth curve from $v = 2.5$ at $x = 0$ to $v = 0$ at Q ve with increasing gradient	M1 A1	[2]

Q18.

is greater

B1 (a) gravitational PE is energy of a mass due to its position in a gravitational field elastic PE energy stored (in an object) due to (a force) changing its shape / deformation / being compressed / stretched / strained **B1** [2] (b) (i) 1. kinetic energy = $\frac{1}{2}mv^2$ C1 $= \frac{1}{2} \times 0.065 \times 16^2 = 8.3(2) \text{ J}$ A1 [2] 2. $v^2 = 2gh$ OR PE = mghC1 $h = 16^2 / (2 \times 9.81) = 13(.05) \text{ m}$ A1 [2] (ii) speed at $t = \frac{1}{2}$ total time = 8 (ms⁻¹) or total t = 1.63 or $t_{1/2} = 0.815$ s C1 KE is 1/4 or h at $t_{1/2} = 9.78$ (m) C1 and PE is 3/4 of max ratio = 3 or ratio = 9.78 / 3.26 = 3 A1 [3]

(iii) time is less because (average) acceleration is greater OR average force

B1

[1]